460 research outputs found

    Household Finance

    Get PDF
    This chapter argues that geographical approaches make clear how crucial the household is for understanding finance and financialization. Geographical approaches to household finance make visible new hierarchies and inequalities in the distribution and redistribution of gains and losses from financialization. Finance has long been something associated with particular spaces of global capitalism, the steel and glass of global financial centres connected in a web of what become ‘global’ cities. The household makes visible how daily life constitutes financialization as a macroeconomic regime. The household is also produced by and productive of national scales, as financialized processes are intimately connected with state policies that have supported social (asset-based) welfare. Scalar geographies of household finance beyond Euro-America also show how finance itself differs geographically. Place-based approaches to household finance also show how intimate forms of harm link bodies and everyday experience with household/community dynamics and global finance

    Blood Parasite Infection Differentially Relates to Carotenoid-Based Plumage and Bill Color in the American Goldfinch

    Get PDF
    Male and female American goldfinches (Spinus tristis) express condition-dependent carotenoid-based plumage and bill coloration. Plumage color is relatively static, as pigments incorporated into feathers during the spring molt cannot be mobilized thereafter. In contrast, bill color is dynamic, reflecting changes in condition over short time periods. Previous studies have shown that male and female ornaments, though similar in expression, are differentially related to measures of immunocompetence, suggesting that the relationship between ornamentation and parasite infection may differ between the sexes. In this study, we evaluate the relationship between condition-dependent ornamentation (plumage and bill color) and blood parasite infection in male and female American goldfinches. We captured goldfinches after completion of the pre-alternate molt and prior to the onset of nesting and assessed prevalence of Trypanosoma parasites via blood smears. Plumage color strongly predicted trypanosome infection: Birds with more colorful plumage were less likely to present infections. In contrast, we detected no relationship between infection and bill color, which in other studies has been shown to dynamically reflect current condition. Sex did not affect the relationship between infection status and either ornament. Together, these results suggest that physiological pathways linking carotenoid ornamentation and infection may vary even within a single species

    Improving the accuracy of protein secondary structure prediction using structural alignment

    Get PDF
    BACKGROUND: The accuracy of protein secondary structure prediction has steadily improved over the past 30 years. Now many secondary structure prediction methods routinely achieve an accuracy (Q3) of about 75%. We believe this accuracy could be further improved by including structure (as opposed to sequence) database comparisons as part of the prediction process. Indeed, given the large size of the Protein Data Bank (>35,000 sequences), the probability of a newly identified sequence having a structural homologue is actually quite high. RESULTS: We have developed a method that performs structure-based sequence alignments as part of the secondary structure prediction process. By mapping the structure of a known homologue (sequence ID >25%) onto the query protein's sequence, it is possible to predict at least a portion of that query protein's secondary structure. By integrating this structural alignment approach with conventional (sequence-based) secondary structure methods and then combining it with a "jury-of-experts" system to generate a consensus result, it is possible to attain very high prediction accuracy. Using a sequence-unique test set of 1644 proteins from EVA, this new method achieves an average Q3 score of 81.3%. Extensive testing indicates this is approximately 4–5% better than any other method currently available. Assessments using non sequence-unique test sets (typical of those used in proteome annotation or structural genomics) indicate that this new method can achieve a Q3 score approaching 88%. CONCLUSION: By using both sequence and structure databases and by exploiting the latest techniques in machine learning it is possible to routinely predict protein secondary structure with an accuracy well above 80%. A program and web server, called PROTEUS, that performs these secondary structure predictions is accessible at . For high throughput or batch sequence analyses, the PROTEUS programs, databases (and server) can be downloaded and run locally

    First light for avian embryos: eggshell thickness and pigmentation mediate variation in development and UV exposure in wild bird eggs

    Get PDF
    Article first published online: 29 JUL 20141. The avian embryo's development is influenced by both the amount and the wavelength of the light that passes through the eggshell. Commercial poultry breeders use light of specific wavelengths to accelerate embryonic growth, yet the effects of the variably patterned eggshells of wild bird species on light transmission and embryonic development remain largely unexplored. 2. Here, we provide the first comparative phylogenetic analysis of light transmission, through a diverse range of bird eggshells (74 British breeding species), in relation to the eggshell's thickness, permeability, pigment concentration and surface reflectance spectrum (colour). 3. The percentage of light transmitted through the eggshell was measured in the spectral range 250–700 nm. Our quantitative analyses confirm anecdotal reports that eggshells filter the light of the externally coloured shell. Specifically, we detected a positive relationship between surface eggshell reflectance (‘brightness’) and the percentage of light transmitted through the eggshell, and this relationship was strongest at wavelengths in the human-visible blue-green region of the spectra (c. 435 nm). 4. We show that less light passes through thicker eggshells with greater total pigment concentrations. By contrast, permeability (measured as water vapour conductance) did not covary significantly with light transmission. Eggs of closed-nesting species let more light pass through, compared with open nesters. 5. We postulate that greater light transmission is required to assist embryonic development under low light exposure. Importantly, this result provides an ecological explanation for the repeated evolution of immaculate, white- or pale-coloured eggshells in species nesting in enclosed spaces. 6. Finally, we detected correlative support for the solar radiation hypothesis, in that eggshells of bird species with a longer incubation period let significantly less of the potentially harmful, ultraviolet (UV) light pass through the eggshell. In summary, we demonstrate suites of avian eggshell properties, including eggshell structure and pigmentation, which are consistent with an evolutionary pressure to both enhance and protect embryonic development.Golo Maurer, Steven J. Portugal, Mark E. Hauber, Ivan Mikšík, Douglas G. D. Russell and Phillip Casse
    corecore